
Twain Support In ObjectPAL 1 13-February-2002

TWAIN Support In ObjectPAL

By Paul Cronk

13-February-2002

Revision History

Date Version Author Description
13-February-2001 1.4 Paul Cronk Edits for Paradox 10 SP2
08-August-2001 1.3 Paul Cronk 3rd revision
01-July-2001 1.2 Paul Cronk 2nd revision
28-June-2001 1.1 Paul Cronk 1st revision
07-June-2001 1.0 Paul Cronk Initial draft

Reviewers

Dennis Santoro
Steve Caple
Oak Hall
Tony McGuire
Liz Woodhouse

Twain Support In ObjectPAL 2 13-February-2002

TABLE OF CONTENTS

Definitions ..3
Requirements...3
Introduction ..4

What is TWAIN and TWAIN support?..4
What are the benefits of TWAIN support?..4

TWAIN Support Overview..5
Checking for Twain Support ...5
Opening a Session ..6
Default Sources ...7
Showing the Select Source Dialog..7
Enumerating Data Sources...8
Setting the source for a session..8
Getting the source for the session...9
Getting the number of sources..10
Acquiring Images ...10

Function Reference...14
Sample Projects ...18

Picture Saver...18
Picture Saver Startup Script ..18
Picture Saver Dialog...18
Add Picture Dialog..18
Select Source Dialog..18

Advanced Techniques ...19
Saving the Application Default Source...19
Handling Graphics ...19
Setting the System Default Source..19
Caveats with TWAIN support in ObjectPAL ...20
Where can I find more information about TWAIN?..20

Twain Support In ObjectPAL 3 13-February-2002

Definitions

TWAIN-compliant data source
an acquisition source that complies with the TWAIN protocol.

source manager
a middle-ware that communicates between applications and TWAIN-compliant data

sources.

TWAIN session
a state where a TWAIN variable has established a connection with the source manager.

This process is known as ‘Opening a TWAIN session’.

acquiring
the act of transmitting an image from the data source to the application.

Requirements

TWAIN support was added to Paradox in version 9, Service Pack 1. ObjectPAL support for
TWAIN came later in version 10.

• You must be running Paradox 10 (or later).
• The file pxtwn32.dll must be located in the same directory as pdxwin32.exe
• The file twain_32.dll must be present in your operating system directory (c:\winnt,

c:\windows)
• At least one TWAIN-complaint data source installed on the machine.

Twain Support In ObjectPAL 4 13-February-2002

Twain Support in ObjectPAL

Introduction

There are many advantages of putting TWAIN support into your application. This introduction
discusses some of the common questions regarding TWAIN, and its uses.

What is TWAIN and TWAIN support?

TWAIN is an interface that enables applications to transmit images from imaging
hardware devices. These devices primarily include digital cameras and page
scanners. Images when acquired are scanned directly into the application for
direct manipulation.

TWAIN support is a term for the client application. Applications which conform to
the TWAIN interface and acquire images into their application are said to have
TWAIN support. A data source which complies with the TWAIN interface is said
to be TWAIN-compliant.

TWAIN is not an acronym. The word TWAIN is from Kipling’s, “The Ballad of
East and West” – “… and never the twain shall meet.” However, many people
believe that it is indeed an acronym. Perhaps the best entry for an acronym was
“Technology Without An Interesting Name.”

What are the benefits of TWAIN support?

Nearly every application that supports some form of photo-identification will
benefit by including TWAIN support with their application. A health club that has
photo-ID for its members or a hospital and employee identification tags. Even
things as simple as a plant collection, fish database, and coin collections can
benefit by having the ability to scan images into a table.

Twain Support In ObjectPAL 5 13-February-2002

TWAIN Support Overview

In Paradox 9, interactive TWAIN support was added in SP1. This gave the ability to acquire
images from scanners and cameras into tables and forms. However, not until Paradox 10 did
the support become available to the developer. The TWAIN type in ObjectPAL gives the
developer the ability to acquire images from scanners and cameras, and place those images into
files, graphic types, and tables. The TWAIN type also contains functions to enumerate through
the list of data sources on the computer. With the addition of the TWAIN type developers can
add the ability to acquire and manage scanned images.

A TWAIN variable type is used to acquire images from TWAIN-compliant devices.
Communication between Paradox (or more precisely the TWAIN variable) and the source
manager is established by opening a session with the source manager.

The source manager is installed when the first TWAIN-compliant device is installed onto the
workstation. The latest version of the twain_32.dll, which contains the source manager, is placed
into the operating system directory by the installation program of a TWAIN-complaint device.

For Windows ME, and Windows 2000, Microsoft came out with WIATWAIN, an acronym for
Windows Imaging Acquisition TWAIN. This means that all Windows ME and 2000 machines
come with the source manager installed as part of the operating system. WIATWAIN is a
windows driver and interface for data sources. Regardless of the operating system, Paradox still
behaves the same way.

TWAIN support is treated like a plug-in for Paradox. The file ‘pxtwn32.dll’ contains the interface
that Paradox uses to communicate with the source manager. If this DLL is not present (or not
plugged-in), then all the functionality related to TWAIN support is effectively disabled. Note that
you cannot use the Paradox 9 SP1 version of pxtwn32.dll in the absence of its existence in
Paradox 10. The only similarity between the two files is the filename. The version shipped with
Paradox 9 SP1 does not provide an interface to ObjectPAL.

After a connection has been established with the source manager, the application can enumerate
the available data sources, acquire images, get the default source for the machine, and set the
data source for the session.

Images acquired via a TWAIN variable can be transferred to three different formats. ObjectPAL
can acquire to a file, a graphic type, or a graphic field that has been placed in edit-mode. There
is also an option to display the user-interface for the data source before acquiring.

Checking for Twain Support

To check for TWAIN support, the application would typically call
isTwainAvailable() on the startup of the application, and store the result for later
reference.

#FormData1::var
var

loTwain Logical
endvar

#FormData1::init
method init(var eventInfo Event)

loTwain = isTwainAvailable()

endMethod

Twain Support In ObjectPAL 6 13-February-2002

Whenever the application is about to display user-interface items regarding
acquisition, the variable loTwain is referenced. If this value returns FALSE, then
the user-interface items are disabled, hidden, or removed.

This allows applications to take advantage of workstations that have TWAIN-
compliant devices attached and still function with those workstations with no
TWAIN-compliant devices.

Each developer/application will have their own methods of handling application
settings. This example is not to point out the best method, but to suggest that
storing the return value of isTwainAvailable() for later reference is a good idea.

Opening a Session

As stated previously, communication between the source manager and the
TWAIN variable type is handled by a session. Typically, this is known as
‘opening a TWAIN session’. The session is the only means to talk to the source
manager. To establish a session, the function open() is called.

While not efficient, this does provide another means to verify that TWAIN support
is available. If the return code from open() is false, then the TWAIN session
could not be established.

Lastly, developers can code an isAssigned() call to determine if the session was
established. Normally, conditional code would be wrapped around the open()
call.

Like most session style objects, the close() function will terminate the session.
Like the TCursor object, when the variable goes out of scope, the variable is
unassigned, and the session is terminated. A simple example is described
below.

btnExample::pushbutton
method pushbutton(var eventInfo Event)
var

twSes Twain
endvar

;// open a session to the source manager, and report
;// an error if one is returned.
if not twSes.open() then

errorShow()
return

endif

if twSes.isAssigned() then

;// acquire, select source, etc…
endif

;// close the session.
twSes.close()

endMethod

Twain Support In ObjectPAL 7 13-February-2002

Default Sources

The term default source refers to the system-wide TWAIN-compliant data source
that is used by default for acquiring images. The only supported way of changing
the system default data source is through the Select Source dialog. If the source
for a TWAIN session is not explicity set, the session inherits the system’s default
data source for the acquisition.

The following example describes how to get the default source for the machine.
This information is useful if you are coding your own Select Source dialog. When
coding your own Select Source dialog, the application is responsible for saving,
and retrieving the selected data source. The application is also responsible for
ensuring the data source still exists on the system.

btnExample::pushbutton
method pushbutton(var eventInfo Event)
var

twSes Twain
strSource String

endvar

if not twSes.open() then
errorShow()
return

endif

strSource = twSes.getDefaultSource()
msgInfo (“Default Source”, strSource)

twSes.close()
endMethod

Showing the Select Source Dialog

The Select Source dialog is used to select a data source to acquire from. The
data source that is selected from the Select Source dialog becomes the default
data source for the machine.

btnExample::pushbutton
method pushbutton(var eventInfo Event)
var

twSes Twain
strOldSource String
strNewSource String

endvar

if not twSes.open() then
errorShow()
return

endif

strOldSource = twSes.getDefaultSource()
twSes.ShowSelectSourceDlg()
strNewSource = twSes.getDefaultSource()

Twain Support In ObjectPAL 8 13-February-2002

if strOldSource = strNewSource then
msgInfo (“Twain”, “The data source has not changed.”)

else
msgInfo (“Twain”, “The data source has changed”)

endif

twSes.close()

endMethod

Enumerating Data Sources

A TWAIN session can enumerate all the data sources on a machine. This is as
simple as opening a TWAIN session and calling enumSourceNames(). This
information returns the source names of the data sources located on the
machine. The index of each data source is stored in the key of the returned
dynArray entry. The index should only be used as a means to retrieve the data
source name, and should not be stored for later use.

btnExample::pushbutton
method pushbutton(var eventInfo Event)
var

twSes Twain
strOldSource String
dynSourceNames DynArray[] String

endvar

if not twSes.open() then
errorShow()
return

endif

twSes.enumSourceNames(dynSourceNames)
dynSourceNames.view()

twSes.close()

endMethod

Setting the source for a session

To set a data source for the TWAIN session, the caller would use setSource(). If
the source is not found in the source list, then the setSource() returns FALSE.
The following example will select the first source name in the source name list.

BtnExample::pushbutton
Method pushbutton(var eventInfo Event)
var

twSes Twain
strOldSource String
dynSourceNames DynArray[] String

endvar

if not twSes.open() then
errorShow()
return

Twain Support In ObjectPAL 9 13-February-2002

endif

twSes.enumSourceNames (dynSourceNames)

;// if there was at least one source name, then set it.
if dynSourceNames.size() >= 1 then

twSes.setSource (dynSourceNames[1])
else

msgInfo (“Twain”, “There are no sources available.”)
endif

twSes.close()

;// ...

endMethod

Getting the source for the session

The source for the current session can be set by calling setSource(). Likewise,
to retrieve the selected source use getSource(). The difference between
getSource(), and getDefaultSource(), is that in the latter we are retrieving the
default source for the system, and getSource() retrieves the source for the
session. In the event that the source has explicitly been set by the developer,
calling getSource() without setting the session source will return the same result
as getDefaultSource(). For this example, we’ll assume we always want to
acquire from the camera, regardless of what they have selected.

BtnExample::pushbutton
Method pushbutton(var eventInfo Event)
var

twSes Twain
strSourceName String
dynSourceNames DynArray[] String

endvar

if not twSes.open() then
errorShow()
return

endif

strSourceName = twSes.getSource()
if strSourceName <> “QV QuickCam 2.33 32bit” then

if not twSes.setSource (“QV QuickCam 2.33 32bit”) then
msgInfo (“Twain”, “The camera isn’t installed.”)
return

endif
endif

twSes.close()

endMethod

Twain Support In ObjectPAL 10 13-February-2002

Getting the number of sources

In Setting the source for a session, the example set the source based on results
from the enumSourceNames() method of the Twain type. The code relies on the
size() function of the DynArray type to return the number of sources available in
the array. By using getSourceCount(), the number of TWAIN-compliant data
sources is retrieved.

Since at least one TWAIN-compliant device is required for TWAIN support to be
available, this function should never return 0. Thus, we can safeguard our code
by getting the source count after opening the TWAIN session. The example
below clearly illustrates how we can produce more efficient code:

BtnExample::pushbutton
Method pushbutton(var eventInfo Event)
var

twSes Twain
strOldSource String
dynSourceNames DynArray[] String

endvar

if not twSes.open() then
errorShow()
return

endif

if twSes.getSourceCount() = 0 then
errorShow()
return

endif

twSes.enumSourceNames (dynSourceNames)
twSes.setSource (dynSourceNames[1])

twSes.close()

endMethod

Acquiring Images

With the Twain type, developers can acquire images into three different formats.
For each format, the user-interface can be shown or not shown.

Paradox does not support multiple image handling. Certain cameras can buffer
images in the camera memory, and send them in succession. Paradox does not
support the ADF (automatic document feeders), such as scanners. The reason
is quite simple. It makes little sense to scan 40 images into the same graphic
field in a table. A graphic type can only hold one graphic, and a file can only
have one filename.

Paradox does not support 32bit images, regardless if they are scanned in, or
imported from files. With other topics such as graphics handling, 24bit scanned
images can be saved to disk in .gif, .jpg formats to keep the file size down.

Paradox 10 SP1 does not support acquiring to a graphic type. Attempting to
acquire to a graphic type will result in an error stating that an unassigned variable

Twain Support In ObjectPAL 11 13-February-2002

was referenced. In fact, upon further investigation, it appears that it is calling the
‘acquire to file’ TWAIN function. Paradox 10 SP2 corrects this behavior.

Acquiring to a file

To acquire to a file, only the filename is required. Like other ObjectPAL
functions, if the filename is not preceded with an absolute path, the working
directory is assumed.

BtnExample::pushbutton
Method pushbutton(var eventInfo Event)
var

twSes Twain
strFileName String

endvar

if not twSes.open() then
errorShow()
return

endif

strFileName = “acquired.bmp”

;// acquire to the filename, acquired.bmp.
;// show the user interface.
if not twSes.acquire (strFileName, true) then

errorShow()
endif

twSes.close()

endMethod

Acquiring to a graphic object

Acquiring to a graphic object is straight-forward. The first parameter of the
acquire() method is the uiObject that refers to the graphic object. The graphic
object can be in run or design mode.

BtnExample::pushbutton
Method pushbutton(var eventInfo Event)
var

twSes Twain
uiGraphic UIObject

endvar

if not twSes.open() then
errorShow()
return

endif

;// acquire to the field, fldGraphic.
;// show the user interface.
uiGraphic = fldGraphic

if not twSes.acquire (uiGraphic, true) then

Twain Support In ObjectPAL 12 13-February-2002

errorShow()
endif

twSes.close()

endMethod

Acquiring to a graphic field object

Acquiring to a graphic field is a little more complex than a graphic object. The
form must be in edit mode. The uiObject refers to the graphic field. If these two
conditions are not met, then the acquire method will log an error to the error
stack.

BtnExample::pushbutton
Method pushbutton(var eventInfo Event)
var

twSes Twain
uiGraphic UIObject

endvar

if not twSes.open() then
errorShow()
return

endif

;// place the form in edit mode.
;// acquire to the graphic field object, fldGraphic.
;// show the user interface.
fldGraphic.edit()

uiGraphic = fldGraphic

if not twSes.acquire (uiGraphic, true) then
errorShow()

endif

twSes.close()

;// end Edit mode which will post the record.
fldGraphic.endEdit()

endMethod

Acquiring to a graphic type

This example does not work in Paradox 10 SP1. Acquiring to a graphic type
returns an error stating usage of an unassigned variable. This issue has been
resolved in Paradox 10 SP2.

However, for completeness, the example, plus an explanation is listed here. Its
intended functionality is the ability to acquire an image from a data source and
place the image into the graphic variable. Then the graphic variable can be
written to disk, stored into a table, or displayed on screen.

BtnExample::pushbutton

Twain Support In ObjectPAL 13 13-February-2002

Method pushbutton(var eventInfo Event)
var

twSes Twain
gAcquired Graphic

endvar

if not twSes.open() then
errorShow()
return

endif

;// acquire to the graphic type, gAcquired.
;// show the user interface.
if not twSes.acquire (gAcquired, true) then

errorShow()
endif

qAcquired.writeToFile (“c:\\temp\\acquired.bmp”)

twSes.close()

endMethod

Twain Support In ObjectPAL 14 13-February-2002

Function Reference

isTwainAvailable Twain

proc isTwainAvailable() Logical

Parameters : none
Returns : Logical

This function returns TRUE if TWAIN support is available, and FALSE if TWAIN support is
unavailable at the time of the function call.

IsTwainAvailable() will check the existence of the TWAIN interface plug-in (pxtwn32.dll). If this is
found, then a connection to the source manager (twain_32.dll) is attempted. If the connection
was established successfully, a further is made to check to ensure that there is at least one
source available for acquiring before returning TRUE to the caller.

acquire (to a UIObject type) Twain

Method acquire(const ui uiObject, const bShowUI Logical) Logical

Parameters : ui UIObject to acquire to
bShowUI show the user interface of the source

Returns : Logical

This function acquires an image into the passed UI object. The passed UI object must be a
graphic object, or a graphic field object that is in edit mode. If either of these two conditions are
not met, the function fails.

If the acquisition dialog is cancelled, the function still returns TRUE.

acquire (to a graphic type) Twain

Method acquire(const gAcquired Graphic, const bShowUI Logical)
Logical

Parameters : gAcquired graphic object to acquire to
bShowUI show the user interface of the source

Returns : Logical

This method requires Paradox 10 SP2 to function properly. In Paradox 10 SP1, this method
states an error about the usage of an unassigned variable. For completeness, however, the
summary is listed below.

This function acquires an image into the passed graphic type. If the acquisition dialog is
cancelled, the function still returns TRUE. To determine if dialog was cancelled, verify that the
graphic type is assigned. If the graphic type is unassigned, then the dialog was cancelled.

Twain Support In ObjectPAL 15 13-February-2002

acquire (to a file) Twain

Method acquire(const strFileName String, const bShowUI Logical)
Logical

Parameters : strFileName name of the file to acquire to.
bShowUI show the user interface of the source

Returns : Logical

This function acquires an image into the passed filename. If the filename is not preceded with an
absolute path, the working directory is assumed. The file can be prefixed with an alias, to store
the file at the location of the passed alias.

This method can acquire 32bit images to disk.

Specifying an extension to the filename (such as .jpg, or .gif) will not convert the file. The file will
be stored as a bitmap regardless.

If the acquisition dialog is cancelled, the function still returns TRUE. To determine if dialog was
cancelled, verify existence of the file on disk. If the file is not to be found, then the dialog was
cancelled.

close Twain

Method close() Logical

Parameters : none
Returns : Logical

This function returns TRUE when the session is closed. It will return FALSE, if the variable is in a
state where it cannot be aborted (such as acquiring an image).

enumSourceNames Twain

Method enumSourceNames(var dyn DynArray[] String) Logical

Parameters : dyn dynamic array to hold results
Returns : Logical

This function enumerates the sources that exist on the current machine, and places them into the
passed dynamic array. These same names can be used to set the source for the session.

getSource Twain

Method getSource() String

Parameters : none
Returns : String current data source name

This function returns the source name for the session. If the source name for the session has
not been set, then the default source for the machine is used.

Twain Support In ObjectPAL 16 13-February-2002

getDefaultSource Twain

Method getDefaultSource() String

Parameters : none
Returns : String system default data source

This function returns the system default TWAIN data source. This data source is the selected
entry in the system Select Source dialog. This function is useful for resetting/setting or comparing
the current session data source to that of the system.

getSourceCount Twain

Method getSourceCount() LongInt

Parameters : none
Returns : LongInt returns the number of data sources

This function returns the number of TWAIN-compliant data sources that exist on the machine.
This function should never return 0. If there are no data sources existing on the machine, then
the function isTwainAvailable() would return FALSE, and open() would not establish a session.

isAssigned Twain

Method isAssigned() Logical

Parameters : none
Returns : Logical

This function returns TRUE if the twain session has been opened, and FALSE if not. Generally,
developers should code around the open() call to deal with errors or problems establishing the
session.

open Twain

Method open() Logical

Parameters : none
Returns : Logical

This function returns TRUE if a TWAIN session could be established. An application can have
multiple TWAIN sessions occurring at the same time. However, one and only one can be
communicating with the TWAIN manager at any time.

Twain Support In ObjectPAL 17 13-February-2002

setSource Twain

method setSource(const strSourceName String) Logical

Parameters : strSourceName source name to set
Returns : Logical

This function sets the source name for the session. If the source name could not be found, then
the function returns FALSE.

Note: As of Paradox 10 SP2 - if the function fails to set the passed source name, coding an
errorShow() to display the error will have no effect. No error dialog will be displayed.

showSelectSourceDlg Twain

Method showSelectSourceDlg() Logical

Parameters : none
Returns : Logical

This function displays the Select Source dialog from the source manager. This is the only
supported way of changing the default data source for the system. However, for most TWAIN
enabled applications, it is best to store the default source for the application, instead of relying on
the system data source. By storing the default source for the application, the administrator gains
more control over what devices may render images, and what devices cannot.

Twain Support In ObjectPAL 18 13-February-2002

Sample Projects

Picture Saver

The Picture Saver application mimics a photo-album. It contains thumbnails of all the pictures
stored in a table. The table has two fields, the first is the key field, and the second the path and
filename of the graphic. Graphics are generally not stored in tables since the BDE expands
graphic files into bitmaps before storing the graphic. Graphics may have been acquired into a
.jpg or .gif format, and thus, the difference in file size warrants special handling of the graphics.
In the Picture Saver application, we store the graphic outside of the table, and store the filename
in the table.

Picture Saver Startup Script

Abstract: The Picture Saver script sets the alias for the application and calls the main
form. Use the startup script to ensure that the ‘PictureSaver’ alias is set before reviewing
the samples.

Uses: nothing

Picture Saver Dialog

Abstract: The Picture Saver dialog contains a thumbnail view of the pictures in
the photo album. To accomplish the thumbnail view, we place the key field and
a graphic object in a multi-record object. On the newvalue() event of the key
field, we load the appropriate graphic from the file, and assign it to the graphic
object.

The dialog has one button, labeled Add, which calls the Add Picture dialog.

Uses: isTwainAvailable()

Add Picture Dialog

Abstract: The Add Picture Dialog is used to acquire images from a data source,
or to import images into the table. The Select Source button brings up the
Picture Saver Select Source dialog

Uses: open(), close(), setSource(), acquire()

Select Source Dialog

Abstract: Our Select Source dialog mimics the behavior and operations of the
Select Source dialog displayed by source manager. In this dialog, we ask the
source manager for a list of data sources, and populate a list box with them.
The code has an OK and a Cancel button, and returns the name of the data
source selected.

Uses: open(), close(), enumSourceNames(), getSourceCount(),
getDefaultSource()

Twain Support In ObjectPAL 19 13-February-2002

Advanced Techniques

In this article, the samples use some advanced techniques which should be explored while
designing a TWAIN implementation. These techniques are not mandatory for any TWAIN
enabled application. If the application does not employ the advanced techniques, the application
will still function.

Saving the Application Default Source

Code should never rely on the system default source for acquisition. A straight
acquire() could acquire from a different source than expected, and thus yield
unexpected results. Creating and maintaining the default source for the
application prevents users from acquiring from unwanted or unsupported
sources. This concept can be expanded to include user default sources as well.

Handling Graphics

Graphics require special handling. When a graphic is read from a file, the file is
converted from its original format to a native bitmap form. This is typical in other
applications. In Paradox 10, graphics can be exported to disk in more
compressed formats, such as GIF, and JPEG. The largest advantage of
leveraging the new graphic features in Paradox 10 is size.

Graphics are generally not stored in tables since the BDE expands graphic files
into bitmaps before storing the graphic. Thus, if a developer reads an item into a
graphic type, and places the graphic type into the table, the internal format of the
file is not preserved. This causes the table to grow increasingly large with each
graphic. By storing the filename of the graphic object as a reference to the
graphic, the size of the table is reduced, and the number of entries is only limited
to the size of the drive where the table is located.

Setting the System Default Source

One trick to get the default TWAIN source without showing the Select Source
dialog is to read the profile entries that correspond to the default data source.
The filename is stored in the ‘Default Source’ entry of the ‘TWAIN’ section in the
‘win.ini’ file.

strDSFileName = readProfileString(“win.ini”, “TWAIN”, “Default
Source”)

returns the complete path and filename of the system default data source. It is
then left up to the developer to equate the friendly name displayed in the Select
Source dialog to the filename returned from the above function.

Conversely, the code

writeProfileString(“win.ini”, “TWAIN”, “Default Source”,
“digicam.ds”)

writes the filename of a data source to the windows profile. The onus is on the
developer to ensure the filename exists on the local machine.

The TWAIN Working Group does not support these methods of getting and
setting the default data source. If the system data source changes in the midst of
a twain session, it is conceivable that the user could acquire from a different data

Twain Support In ObjectPAL 20 13-February-2002

source than the one selected. Thus, the only supported means of setting and
getting the system data source is through the source manager.

Caveats with TWAIN support in ObjectPAL

With the current implementation of Paradox 10 SP1, the function twain.acquire(
var gr graphic, var bShow Logical) does not work as documented. However,
one could acquire to a file, then perform a graphic.readFromFile() method after
the acquisition was complete to achieve the same results. Paradox 10 SP2 has
corrected the behavior of the acquire method.

The table view has no user interface for acquiring images. This appears to be an
oversight in the original implementation.

The function twain.isAssigned() is not documented in the help.

The help panel for twain.showSelectSourceDlg() states that the prototype for this
function is showSelectSourceDialog(), not showSelectSourceDlg().

The documentation for TWAIN support is quite limited, and in most cases
incorrect. Most of the arguments are actually of const type, not var. The help
does not automatically point to the correct help panel from the source code
window.

Paradox is not capable of acquiring 32bit graphic images to graphic objects, or
graphic field objects. If a 32bit image is acquired to one of these objects, the
image will appear slanted, or distorted. 32bit images can be acquired to a file
successfully. In general, applications should not acquire images greater than
24bits to adhere to the limitations of Paradox.

Paradox can only receive one image per acquisition. Acquiring multiple images,
such as time-lapsed stills, or a roll of film on a digital camera cannot be
performed using the Paradox TWAIN implementation. This is working as
designed. To acquire time-lapsed stills, perform an acquire with no UI, sleep for
a period of time, and acquire the next image. This gives the flexibility of posting
a record, or storing the image on disk before the next acquisition takes place.

Where can I find more information about TWAIN?

The TWAIN working group can be found on the web, at www.twain.org.

