
Data Normalization: A Primer
by Dennis Santoro

© Copyright 2000,2002 by Dennis Santoro. All rights reserved.
Please see use restrictions at the end of this document.

Revised October 16, 2002

This paper discusses the data normalization process in database
design from a practical and theoretical perspective. Examples are
presented to illustrate multiple approaches to the process.

Modeling the enterprise

It is usually important, especially for new computerization, to
model the existing workflow as much as is practical. While this
phase is an opportunity to improve workflow in the enterprise the
advantages of this must be balanced against the disadvantages of
the effects any workflow modifications will have on staff. A part
of modeling the enterprise is to identify the data elements
involved in the work and to organize it in a way that facilitates
workflow while as much as possible modeling the data
relationships that actually exist in the organization’s
environment.

Normalization

Prior to actual system design, when developing databases, you
must derive the data elements which are needed. If the
organization has done strategic data planning this process will
mostly involve selecting data elements from the strategic
database's data dictionary. If not then it is important to
identify any shared data resources which will be used and then
define additional data items which will be required.

Data dictionaries (not technical but descriptive ones) should be
developed at this stage if they do not exist. Although they will
most likely change during normalization it is important to have a
clear data dictionary of the original system to begin the
normalization process. The development of the data dictionary
will start with identifying relevant data elements and creating
clear, unambiguous definitions of those elements. It is essential
that the definitions be clear and consistent and that the
organization uses them consistently. If a single data element is
defined in more than one way the data can become essentially
meaningless. This is particularly true of systems which will be
used for important analyses.

As an example, suppose we have a contact management system. One
of the contact types we would have is phone calls. On the
surface, this seems simple. However, do we track a phone call
that is attempted but not completed (busy signal)? Tracking the
attempt may be important. Do we track a call which we complete
and where we did not get the party we wanted but rather left a

Page 2

message? Is it different if we leave a voice mail or a message
with a secretary? Obviously all these are different from a call
we complete where we talk with the intended party. And what about
incoming calls as compared to outgoing? So categorizing each type
of phone call becomes important and clear definitions of what
constitutes each type of call becomes essential.
I will use this contact management example throughout this
document. So let’s begin by identifying data elements. We will

assume this system tracks contacts for sales and the orders the
sales contacts generate. We will also manage the shipping data
here so that sales folks using the system can tell if the sales
have been shipped. (Note: This system will be simplified so as to
provide good examples but a real contact management system which
does this would tend to be more complex. I will focus on the
contact rather than the order side of the application for this
paper. Also, spaces, _,-,# should not generally be used in field
and table names, especially in Paradox, but are used here for

We Deliver Contact Sheet
Name: Althea Genofski, Director
Organization: Springfield AIDS Prevention Project
Address: 43 State Street
City: Springfield
State: MA
Zip: 01107

Phones: 413 293-8456 Office, 413 293-7748 fax, 413 293-5542
beeper

Contact description: Private non-profit community agency.
Called on 7/1/2002 for info.

Called on 8/5/2002 to order TLC kits in Spanish and English
and the AIDS info in both languages too

Order info: 8/5/2002: 10 Spanish TLC kits (NC. $3 S&H ea)
10 English TLC kits (NC. $3 S&H ea) and 10 Aids kits (NC.
$1 S&H ea)

Payment received on: 9/10/2002 - 70.00

Date Last Modified: 9/10/2002

Form 1: Contact sheet

Page 3

readability.)

Let us suppose the organization currently tracks contacts on
paper (or in a non database format such as word processing) using
a contact form such as that in Form 1 above.

In thinking through a contact system that meets the needs above
we have to think about the nature of contacts, the nature of
orders, and our business model. We can then begin listing
characteristics of those that we need to track. Based on the
contact sheet above some of the items we would need include:

Name
Title
Address
City
State
Zip
Organization
Organization Address
Organization City
Organization State
Organization Zip
Phones # (1..n)
Phone # Description(1..n)
Category of person/organization Description(1..n)
Type of contact Description(1..n)
Dates of contact(1..n)
Order Date(1..n)
Quantity(1..n)
Item(1..n)
Price(1..n)
Shipping(1..n)
Amount paid(1..n)
Date paid(1..n)

While these items would need to be defined clearly as mentioned
above, the details of these definitions are usually
organizationally based. Because of that I will not go through
that here but will describe specific definitions as needed. I
should also make it clear at this point that the process of
identifying data items, normalizing data and defining it is an
iterative process. Each part affects the others and changes will
take place as the process proceeds.

During the normalization process we must identify 3 basic types
of database element: entities, attributes and relationships.
Entities are generally real world objects or concepts. A person
may be an entity. So might an order or a bill. Attributes are
components that describe the entity. For example, first name and

Page 4

last name are two attributes of the entity “person.”
Relationships describe the connection or interdependence among
entities. For example, the entity person will have a relation
with one or more address entities. Relationships are generally
delineated as one to one (1:1), one to many (1:M) or many to many
(M:M).

The primary entity in this contact set is the person. That is the
entity whom we have contact with so it is central to the database
and, for our purposes here, all relationships flow from it. The
items identified as 1..n indicate that there could be any number
of these for any individual (home phone, work phone, cell phone,
etc.)

Once the data items are derived and defined it is important to
normalize them. There are 5 rules of normalization (relating to
what are called "Normal Form"). Lets work the data items through
normalization. Normalization involves breaking data into logical
sets that model the real world as efficiently and completely as
possible. This involves applying a set of rules to the data and
thinking about the real world use and application of your data.
The sets are groups of attributes which are descriptive of
entities.

Keys and Links

Normalization also involves creating keys for each data set. A
key is a unique identifier for the records in the 2 dimensional
data set. This can be a single field or can be composed of
multiple fields which together form a unique identifier (this
latter is called a compound or concatenated key).

Normalization also involves designing the linkages between data
sets. Links are always made based on data contained in the 2 or
more related data sets. The data must exist in both data sets for
the link to be created.

In cases where the link exists on values that are unique in both
data sets a 1:1 relationship exists. Since the value can only
exist once in each table and the relationship is based on that
value only one record in each set will match one record in the
other.

In the case of the link values being unique in one data set but
not unique in another we say we have a 1:M relationship. Since
the value is based on a unique value in the first set but a
potentially repeated value in the other set the unique value in
the first set can match many records in the second set.

In cases where the link exists on values which are not unique in
either set we say we have a M:M relationship. Since the values

Page 5

can exist repeatedly in both sets the value associated with
several records in one set may also be associated with multiple
records in the second set. In general practice, however, most
many to many links are actually implemented by using two separate
tables that have a one to many relationship to an intermediate
table which is generally referred to as a relationship table.

There are 2 schools of thought about record keys. One is that it
should use real and meaningful data as part of a record key. The
second is that all record keys should be meaningless integers
(which is generally referred to as a surrogate key). I generally
come down leaning towards the meaningless integer (surrogate) key
but there are times when meaningful data keys make more sense. I
think in some circumstances, keys which are derived from real
data, or which have real data embedded in them (e.g. serial
numbers which tell you something about the manufacturing location
and product run) can be useful. In many cases, however, integer
keys are more efficient and secondary indices can be used on
fields with real data instead of using them as keys. In the
following examples I will use a mix of both methods.

A common problem with meaningful keys is that a designer picks
some value they expect will never change. Later, because of
business rule changes, real world events or misinformation about
the nature of the value, the key value does change. This can be a
serious problem for data integrity and data audits. Key values
should be selected such that they should never change. Even such
seemingly invariant values as a US social security number can end
up being changed because of such things as identity theft. This
makes it a poor choice as a key. Surrogate keys, on the other
hand, will be unique by definition and, since they are
meaningless, they will never need to be changed. This is a very
strong argument for them.

There are also 2 basic approaches to linking with keys. In one,
the key of parent is repeated as part of the key of the child. In
cases of a 1:1 relationship this is fully acceptable. In the case
of a 1:M relationship the parent key is repeated and the child
adds one or more data elements to the parent’s key. This forces
the use of compound keys and can be much less efficient and
require more redundant data. The second is the key/foreign key
approach in which the child records have a unique key of their
own which has no data from the parent key and also contains the
parent key as an attribute, but an attribute (field) which is not
part of the child’s key. Both approaches will be illustrated
below, but generally the key/foreign key approach is more
efficient as well as more robust from a data integrity point of
view and compound (concatenated) keys are best avoided.

Among the reasons why concatenated keys are best avoided are the
fact that the growing key size as you proceed into deeper levels

Page 6

ORDERS Table

ID#: *

Order Date: *

Item ID: *

Item Description:

Quantity:

Price:

Shipping:

NAME Table

ID#: *

Name:

Title:

Address:

City:

State:

Zip:

Organization:

Organization Address:

Organization City:

Organization State:

Organization Zip:

PHONE Table

ID#: *

Phones # : *

Phone # Description:

CATEGORY Table

ID#: *

Category of person/organization Description: *

CONTACT Table

ID#: *

Dates of contact: *

Type of contact Description: *

PAYMENTS Table

Payment ID#: *

ID#: (FK)

Date paid:

Amount paid:

Figure 1 First Normal Form

of the database increase the size of your keys and amount of data
redundancy and data transport. You can end up in situations where
you have more fields in the key than in the actual attributes of
the key. Compare this to carrying a single foreign key field to
the next child table. In addition, in some database software this
will potentially make your indices more fragile and susceptible
to damage. Loss of data integrity may result. There are
additional reasons but they will not be addressed in this paper.

Rules of Normalization

There are 5 rules of normalization. Few databases go through
progressive normalization such as will follow. As one gains more
experience one begins to see relationships and jump to higher
levels without going through the others first. Also, as we
progress through each normal form here we will not take every
data set in the database to the next normal form but will
illustrate it with certain sets.

The first rule of normalization is to Eliminate repeating groups.
Make separate sets for each group of related attributes and give
each a primary key (first normal form).

In Figure 1 I have taken our data elements and broken them into
groupings to eliminate repeating groups and we have created a key
for each group. I have also created a relationship for each data
set to the NAME data set. (Note: overlaps between tables indicate
they are related by a link, an * after a field name indicates the

field is an
element of the
key in that
table and
(FK)after a
field name
indicates the
field is a
foreign key in
that table which
relates it to
the parent.)

I have taken the
data related to
the individual
that does not
repeat and
placed it in a
table called
NAME. The data
items we had
previously

Page 7

identified as 1..n have now been broken out into separate tables
with a 1:M relationship to the NAME table records. For example,
rather than have separate items in the name table for Work Phone,
Cell Phone, Beeper, etc. and have many of them be blank, we have
broken the Phones out into a table of their own. We now can store
only phone types the person has.

We have repeated the ID# which we created as a unique identifier
for NAME records in most of the related tables to provide a link
with all the subsidiary (child) tables. In some cases we have
used that as the first element of a multi part key but have added
enough other elements in the child table key to make each record
in the child tables unique (these are concatenated keys). For
example no individual will have the same phone number twice (the
key is ID# & Phone#) . This will have to be partly mitigated by
having a phone description that includes individual use lines and
multi use lines (e.g. we will need separate categories for Work,
Fax and Work & Fax)

Note also that a better approach in most circumstances is the
Key/Foreign Key approach. In this approach the key of the child
table is another unique integer or other type of key if we are
not using surrogate keys. The link between the parent and child
records in the tables is made by using a secondary index on the
foreign key, which is the key value from the appropriate record
in the parent table. This foreign key value is not part of the
key in the child table, however, as concatenated keys are
generally best avoided, especially for linking purposes as
described above.

This Key/Foreign Key approach is illustrated in the PAYMENTS
table (in Figure 1 above) where each payment has a Payment ID#
Key and the link is on the Foreign Key ID# which is the key of
the Parent table but not part of the key in Payments.(Note: You
may find issues above which seem presently unresolvable such as
what happens if a person is involved with more than one
organization. These will be addressed as we continue.)

The second rule of normalization is Eliminate redundant data. If
an attribute depends only on part of a multivalued key remove it
to a separate table (second normal form).

Note that in the Figure 2 (below) we have separated the ORDERS
Table to ORDERS and ITEM DESCRIPTION Tables. Since our item
numbers are unique and the descriptions are only related to the
item number there is no need to have both in the table. Note also
the CONTACT and CONTACT TYPE tables and CATEGORY and CATEGORY
LISTING tables have been created from the original CONTACT and
CATEGORY tables. While this is not strictly necessary we have
decided to do this because codes are easier to type and remember
accurately and codes will take less storage space than full

Page 8

PAYMENTS Table

Payment ID#: *

ID#: (FK)

Date paid:

Amount paid:

ORDERS Table

ID#: *

Order Date: *

Item ID: *

Quantity:

Price:

Shipping:

NAME Table

ID#: *

Name:

Title:

Address:

City:

State:

Zip:

Organization:

Organization Address:

Organization City:

Organization State:

Organization Zip:

PHONE Table

ID#: *

Phones # : *

Phone # Description:

CATEGORY Table

ID#: *

Category of person/organization #: *

ITEM DESCRIPTION LIST Table

Item ID: *

Item Description:

CATEGORY LISTINGTable

Category of person/organization #: *

Category of person/organization Description:

CONTACT Table

Contact ID#: *

ID#: (FK)

Dates of contact:

Type of contact #:
CONTACT TYPE LIST Table

Type of contact #: *

Type of contact Description:

Figure 2 Second Normal Form

descriptions.
By doing this
we create
small tables
with lookup
values which
are related to
the other
tables. These
tables will
contain a
finite (at any
point in time)
list from
which contact
categories and
organization
categories can
be selected at
any point.
Only the code
need be stored
in the
transaction
table (the
addition of a category in this case).

Note also that the contact table has also been converted to the
more efficient Key/Foreign Key format for linking. Again, this
gives us a single key for the table while maintaining a 1:M link
with the parent through the foreign key which is the parent key
value of the linked master.

The third rule of normalization is Eliminate items not dependent
on the key. If attributes do not contribute to the description of
the key remove them to a separate table. Usually this level of
normalization is adequate(third normal form). Note also, that
when we say key in this context we mean the unique entity itself,
not necessarily the value of the key field as it may be just a
meaningless integer defining uniqueness.

Note that in figure 3 we now have an ORGANIZATION LIST table.
Organization was not dependent on the key of the NAME table
although it is related. Many people may belong to one
organization. In fact any individual may also belong to more than
one organization we deal with although that will be somewhat less
likely than the other case. So I have broken out the
organizations to a table of their own. We still need a
relationship between the person in NAME and the organization(s)
to which they belong.

Page 9

CATEGORY LISTINGTable

Category of person/organization #: *

Category of person/organization Description:

CATEGORY Table

ID#: *

Organization ID: *

Category of organization #: *

ITEM DESCRIPTION LIST Table

Item ID: *

Item Description:

PHONE Table

ID#: *

Phones # : *

Phone # Description:

ORDERS Table

ID#: *

Order Date: *

Item ID: *

Quantity:

Price:

Shipping:

NAME Table

ID#: *

Name:

Title:

Address:

City:

State:

Zip:

Organization ID:

CONTACT Table

Contact ID#:*

ID#: (FK)

Dates of contact: *

Type of contact #: *PAYMENTS Table

Payment ID#:*

ID#: (FK)

Date paid: *

Amount paid:

CONTACT TYPE LIST Table

Type of contact #: *

Type of contact Description:

ORGANIZATION LIST Table

Organization ID:*

Organization:

Organization Address:

Organization City:

Organization State:

Organization Zip:

Figure 3 Third Normal Form

Organizations now also need a unique key of their own. We have
options for how to handle that in third normal form. If we wish
to capture organizations only once but multiple people may be
associated with them, then we can place the Organization ID field
in the NAME table. This allows us to place the link between an
organization and many individuals while still only entering the
organization once. If instead we wanted to have one person
related to multiple organization records we could place the
Person ID field in the ORGANIZATION table. Then a record in NAME
could be related to as many records in ORGANIZATION as we want.

Note in either
case the
foreign key
(the one that
comes from the
other, related
table) is not
part of the
key for the
table to which
it is foreign
but is all or
part of the
key in the
other table.
If, however,
multiple
people and
multiple
organizations
need to be
related to
each other
(M:M) then we
can not
capture that

relationship in this way and must add a relationship table. This
is demonstrated in the CATEGORY table as discussed below.

Once we break the organizations out it has ramifications for the
CATEGORY table. Since previously we were categorizing a table
with both people and organizations in the same entry we now have
to decide whether to categorize the people, the organization or
both. We also have to decide whether we will do this from an
integrated list or from 2 separate lists. In this case we chose
to have the lookup table shared since the categories may be
shared. For example, you might categorize the organization as
non-profit and community hospital and good sales prospect. You
also might classify the person as good sales prospect and
purchasing administrator. Since some of the classifications could
be shared by people and organizations it could then be one lookup

Page 10

ORDERS Table
Order ID#: *

ID#: (FK)

Order Date:
Shipping:

PAYMENTS Table

Payment ID#: *
ID#: (FK)

Date paid:
Amount paid:

CONTACT Table

Contact ID#: *
ID#: (FK)

Dates of contact:

Type of contact #: (FK) NAME Table
ID#: *

Name:
Title:

Address:

City:
State:

Zip:
Address ID: (FK)

PERSON CATEGORY

Table
ID#: *

Category of person #: *

CONTACT TYPE LIST Table

Type of contact #: *

Type of contact Description:

PHONE Table

ID#: *
Phones # : *

Phone # Description:

ORGANIZATION ADDRESS Table

Address ID:*
Organization ID: (FK)

Organization Address:
Organization City:

Organization State:

Organization Zip:
ORGANIZATION LIST Table
Organization ID:*

Organization:

ORGANIZATION CATEGORY Table

Organization ID: *

Category of organization #: *

CATEGORY LISTINGTable

Category of person/organization #: *

Category of person/organization Description:

ITEMSTable

Item ID#: *

Order ID#: (FK)
Item ID: (FK)

Quantity:
Price:

ITEM DESCRIPTION LIST Table

Item ID: *

Item Description:

Figure 4 Fourth Normal Form

table. In Figure 3 we demonstrate having an integrated category
lookup table shared by the CATEGORY table for categorizing both
and the ORGANIZATION table and the NAME table. This relationship,
however, has certain problems associated with it.

While we could have captured the relationship by placing a
Category ID in to both the ORGANIZATION table and the NAME table
this would allow us also only one category per person and one per
organization. We are now capturing a many to many relationship.
In this instance any organization can have any number of
categories and any name can have any number of categories. The
other ID in the table will be blank (Organization ID is blank if
we are categorizing names and ID is blank if we are categorizing
organizations). This is not a good design, and in fact would not
be done this way in a real system, but it is illustrative here.
In a better design we would have 2 relationship tables using one
lookup list and each relation table relating the list to one of
the tables, organization or person.

The fourth rule of normalization is isolate independent multiple
relationships. No data set can contain two or more one to many or
many to many relationships that are not directly related (fourth
normal form). Note again the CATEGORY table in Figure 3. In this
table we are capturing 2 many to many relationships. Any

Page 11

organization can have as many categories as we wish and any name
can as well. And any category can be related to as many names or
organizations (or both) as we wish. This violates the rule.

To meet fourth normal form I have now separated the two many to
many relationships in Figure 4. We have still retained a single
CATEGORY LISTING table but we now have 2 separate tables for the
relationships. The PERSON CATEGORY table now contains the Person
ID and the Category of Person #. The ORGANIZATION CATEGORY table
now contains only the Organization ID and the Category of
Organization #. We can still capture the relationships we could
before but in a cleaner way and without carrying the baggage of
the empty field.

I have made other changes here to the structure although these
are not, strictly speaking, about fourth normal form. While one
person is most likely only involved with one organizational
address the likelihood of some organizations having more than one
address is high. So we would have to redundantly store the
organization information and all its categorization if we had an
organization with more than one address and we had people related
to those separate addresses.

Technically this is a third normal form issue again since the
organization address information is not dependent on the key of
the ORGANIZATION table. So I have broken out the organization
address. In that ORGANIZATION ADDRESS table we now have an
Address ID. That Address ID is now placed as a foreign key in the
NAME table and the Organization ID is now place as a foreign key
in the ADDRESS table. This allows any person to be at one address
and any address to have many people and any address to have only
one organization but any organization to have any number of
addresses. Notice that while moving to fourth normal form in one
area we have also addressed a third normal form issue in another
area.

In fact we might even want to do the same thing for the NAME
Table. If one person may belong to many organizations or if we
want to capture more than their home address we would have to
disassemble the NAME table too.

Note also that in Figure 4 all the foreign keys have been
labeled. They were not all identified in earlier figures to avoid
some confusion. But also note that since data relationships work
in 2 directions the foreign key can be on either side of the
relationship as diagramed. For example I have now broken out
orders into ORDERS, ITEMS and ITEM DESCRIPTION (a far more
functional approach) and used the Key/Foreign Key approach.
Notice that many orders can be connected to a person but an order
can only be connected to one person. So the FK is on the ORDERS
side of the 1:M relationship. But also notice that the Item can

Page 12

NAME Table

ID#: * Name:

1 Lionel Rioux

2 Anibal Mimosa

3 Gerald Lett

ADDRESS Table

ID#: * Address ID*

1 4

2 4

3 4

NAME Table

ID#: * Name:

1 Lionel Rioux

2 Anibal Mimosa

3 Gerald Lett

PHONE Table

 ID#: * Phones # : * Phone # Description:

1 508 555-1234 Main

1 508 555-5678 Secretary

1 508 555-9012 Fax

2 508 555-1234 Main

2 508 555-5678 Secretary

2 508 555-9012 Fax

3 508 555-1234 Main

3 508 555-5678 Secretary

3 508 555-9012 Fax

PHONE Table

Address ID#: * Phones # : * Phone # Description:

4 508 555-1234 Main

4 508 555-5678 Secretary

4 508 555-9012 Fax

Fourth Normal Form

Fifth Normal Form

Figure 5: Comparison of Fourth and Fifth Normal Form

only have one description (1:1) but the description can be
connected to many records in the ITEMS table. So the FK is in the
ITEMS Table even though the relationship is diagramed as 1:1
(although it is in fact M:1) from ITEM to ITEM DESCRIPTION since
the value can repeat in different records and if we were to
reverse the relationship to display all line items with that
description the relationship would now be 1:M ITEM DESCRIPTION to
ITEM. (Remember, a full 1:1 relationship links the actual Key in
both sides of the relationship. In diagrams, however, a M:1 is
often represented, or interpreted a 1:1 functionally although not
in fact.)

The fifth rule of normalization is to isolate semantically
related multiple relationships. There may be practical
constraints on information which justify separating logically
related many to many relationships (fifth normal form). In
practice this is done for efficiency of entry and updates more
than for representing the logic of the data. It tends to grow
naturally out of the normalization process.

Suppose, for example, we wanted to capture not only every phone
number where we can reach someone but also the address to which
that phone number is related since most phone numbers are address

Page 13

ORDERS Table

Item ID#: *
ID#: (FK)

Order Date:

Shipping:

PAYMENTS Table
Payment ID#: *

ID#: (FK)

Date paid:
Amount paid:

CONTACT Table
Contact ID#: *

ID#: (FK)

Dates of contact:
Type of contact #: (FK) NAME Table

ID#: *
Name:

Title:

Address:
City:

State:

Zip:

PERSON CATEGORY Table
ID#: *

Category of person #: *

CONTACT TYPE LIST Table
Type of contact #: *

Type of contact Description:

PHONE Table

Address ID#: *
Phones # : *

Phone # Description:

ADDRESS Table

ID#: *

Address ID* ORGANIZATION ADDRESS Table

Address ID:*

Organization ID: (FK)
Organization Address:

Organization City:

Organization State:

Organization Zip:

ORGANIZATION LIST Table

Organization ID:*

Organization:

ORGANIZATION CATEGORY Table

Organization ID: *

Category of organization #: *

CATEGORY LISTINGTable
Category of person/organization #: *

Category of person/organization Description:ITEMS Table

Item ID#: *
Order ID#: (FK)

Item ID: (FK)

Quantity:
Price:

ITEM DESCRIPTION LIST Table

Item ID: *
Item Description:

Figure 6 Fifth Normal Form

specific unless they are mobile. This suggests a person to phone
to organization address relationship which we have not captured.
Suppose we have one organization address with 3 people who all
have the same 3 phone numbers (Main, Fax, Secretary). To capture
this relationship in forth normal form we use Address ID, Name ID
Phone Number. This creates 9 separate entries to capture the

relationships and works fine. To be more efficient, however, we
could create 2 tables. One would contain the Address ID and the
Name ID (Currently in NAME) and the second would contain the
Address Id and the Phone#. This captures the same relationship in
6 entries (see Figure 5).

In Practice this would change our organization address
relationship as well (see figure 6).

Conclusion

An important thing to remember about normalization is that it is
not an end in itself. The primary purpose of normalization is to

Page 14

model your real world situation in the computer database while
eliminating the potential for introducing anomalous data and
error. Few databases are fully normalized out to fifth normal
form nor do most need to be. Once you have normalized
sufficiently to eliminate potential data entry or relationship
anomalies you are most likely sufficiently normalized.

Also you should realize that this may seem to increase the
complexity of your development and make it somewhat more
complicated to display your data and report it. Beginning
developers often confuse data capture and storage issues with
data display and reporting issues. Temporary denormalization is
often used for those latter purposes since display and reporting
are not related directly to data entry and storage.
Denormalization for those purposes does not create error in the
actual stored data as you create temporary tables which are
denormalized but have no effect on the actual tables used for
data entry and storage.

Thanks to reviewers Elmar von Muralt and Larry DiGiovanni for their valuable contributions.

Conditions of Use and Reproduction:

The content in this paper is provided as is, with no warranties, guarantees, or claims regarding its accuracy,
completeness, or usefulness. While all efforts have been made to ensure its quality and accuracy, you are solely
responsible for your own use of this information.

Any statements of fact contained in this article should be interpreted as the opinions of the author, which may or
may not reflect the opinions of any other entity involved in the transactions that led you to this article.

You may not distribute this information unless you meet the following conditions:

1. You obtain the permission of the author prior to such use including the specifics of what use is requested, any
compensation you expect relating to use of this material. Any permissions will be deemed to be granted only for the
use specifically agreed to in the document granting permission and only for the time period designated in said
grant of permission. (Contact can be made via e-mail at RDAPermissions@RDAWorldWide.com. Please allow
sufficient lead time).

2. All content (including this statement of conditions of use and reproduction) is provided completely unchanged.

3. Any additional conditions contained in any grant of permission are met by the user prior to any such use.

Commercial distribution can be arranged by contacting the author.

Feedback is strongly encouraged, especially constructive criticism and/or typographical/syntactical corrections.
Response or action is left to the discretion of the author. Flames, abusive language, unsolicited commercial email
messages (aka SPAM), and other forms of rudeness will be cheerfully ignored. Professional responses will receive
priority attention. Unprofessional contact will be ignored.

All trade names, trademarks, and service marks are acknowledged as the property of their respective owners.

