
Security Guard for the Internet
by

 Resource Development Associates
© Copyright 2000 by Dennis Santoro and Resource Development Associates. All rights reserved.

How it works:
Since running the Corel Web OCX in Paradox means you are running all your web users in a
single Paradox session, conferring table level password rights to anyone would give all web users
access to tables under the least restrictive rights in the running session. Fortunately, the BDE can
handle many sessions from a single instance of Paradox. Each session can have its own
configuration including different passwords and, therefore, different access rights to tables based
on those passwords. The trick is to start multiple BDE sessions and keep them separate, keep the
users sorted and in their own session and not let rights bubble up to the session running the server
form itself. This is what Security Guard for the Internet accomplishes for you while hiding the
complexity from you.

Also, since users can not see your Paradox GUI they would not know they are being prompted
for a table password. Such a prompt would stop your server OCX. So using password protected
tables in the OCX means you need a way to issue the table passwords. As with Paradox on a net
you do not want users to have real table passwords since you would then have to restructure your
tables and change passwords when users left your organization if you wished to maintain security.
So a means of creating and managing intermediary user passwords which issue table passwords is
important. In addition, you may wish to add Secure Socket Layers (SSL) for transmission of data
on the Internet. Information on how to do this is also available on our web site on the Paradox
resources page. Security Guard for the Internet is fully compatible with SSL.

Security Data:
Security data should be installed in a separate directory on the host system. Your system must
have at least change level access to the data directory as users are able to modify their passwords
from the Internet. The Security Data consists of the files:

Pwords.db
Pwords.px
Pwords.val
Rightslst.db
Rightslst.mb
Rightslst.px
Rightslst.val
Rights.db
Rights.px
Rights.val
Security.db
Security.px

Security.val
Security.xg0
Security.yg0

All access to these files in Security Guard for the Internet is via a tcursor so the data is never
available to end users. Staff granted access in the Management Console to the security data can
only be granted Insert and Delete access. It is recommended that few staff be granted this access.
Initially, one user exists in the database. The User name is Newuser and the password is Newuser
(case is important for both). You are strongly encouraged to create a new account for the
administrator and grant the administrator access to the Security Guard system and then delete this
Newuser account as soon as you begin using the system. Otherwise your system will remain open
to anyone who has read this document. The uses of the various files are explained in the Security
Guard documentation file (Sgdoc.pdf) which you can download from our web site if you wish. If
you have the LAN version of Security Guard you already have these tables set up and should not
change the existing ones. You can skip to the section on Running the Server.

To set Security Guard up you need to create table level passwords in your table structure as you
would for any password protection at the table level. You then create system names for groups of
tables that share passwords for the same rights. You must, as always, be sure not to use one
password to confer one type of rights in one table and another type of rights in another table
unless that is what you specifically intend to do. Once a password is issued to a session it will
confer rights at the level defined by any table that has that password.

Once your tables have passwords and you have defined groups of tables as systems you then put
those system names, the right level that confers and the password into the Security Guard
Password table. As with all Security Guard’s internal tables these are already password protected.

You then create users in the Security Guard Security table. These users are listed by a user name,
first and last names, middle initial if wanted, the user’s personal password (which is not a table
password), last password modification date and expiration interval in days.

Once users exist and systems exist you fill the Security Guard Rights table with combinations of
the User name, System name and Rights level, one record per combination for every system you
wish to grant that user access to on your web site or LAN (the same Security Guard tables should
be used for both if you are running both). All of these tasks except setting up the actual
passwords in your own application tables can be accomplished simply through the Security Guard
for the Internet Management Console over the Internet or your Intranet.

Running the Server:
In the web environment you run the SGServer.fsl in Paradox to run your site. (For details on
setting this up see the Paradox Internet help or Tony McGuire’s Paradox Web Server lessons
which are available on RDA’s Paradox Resources page on our web site.) When a user accesses
your site they are presented with a startup screen that tells them they must log in to proceed and
asking them if they wish to do so. If they submit the login they are presented with the standard
browser User and Password challenge. When they submit it is evaluated and if the presented user

name and password are in your Security Guard system then a session is started for them. They are
then sent back a form which lists the systems they have been granted access to (based on the
rights you have assigned them) and they can pick one. Whichever they pick will be sent back as a
string which you can handle to move them in to your systems. There are a few rules which you
need to follow to successfully use Security Guard for the Web. These are listed below. The
included demo application demonstrates how to plug in an application to Security Guard for the
Internet so you should take some time looking over the code in there as well as these instructions.
You may wish to use the demoapp.lsl as the base for your own applications. If so you should use
a copy. There are also several useful code segments in the demo applications which you will
probably want to use for all your applications. Pay special attention to the sggetfieldvals and
sgerrorproc functions which are quite generic and very useful. You can see how they are applied
in the code in the sgdemochoice method. All these methods are in the source code in the
demoapp.lsl.

Aliases:
Aliases must be created for Security Guard to function. Normal path rules must be followed for
accessing the data and the data must be controlled by the same .Net file for all users as with any
shared Paradox data. If you have the LAN version of Security Guard use the existing aliases you
have set up.

The Alias to the Security Data must be :SecurityData:. It must exist in the IDAPI.CFG file the
copy of Paradox which is running the SGServer.fsl is using. The security data files listed above
must be in that alias. In addition, to run the demo application you will also need to place the
following files there.
demoapp.db
demoapp.px
demoapp.val

The alias SecurityWeb will be created in the same directory as the server if it does not already
exist. The following files must be in the SecurityWeb alias:
demoapp.ldl
demoapp.lsl
server.db
server.px
sghtml.db
sghtml.fam
sghtml.mb
sghtml.px
sghtml.tv
sgmcweb.ldl
sgweb.ldl

You must also put the following files in the folder \PAGES below the folder in which you have
the sgserver.fsl located:
rdalogo1.gif

sgcons.htm
sglogin.htm
sgpw.gif
sgpwldg.htm
sgtimout.htm

It is more secure to place the SecurityWeb alias in a directory above or in a different path from
the Server since it will be unable to be accessed directly from the web. The other Security Guard
aliases will also need to exist. SecurityWeb can be pointing to the same directory as SecurityMain
if you are using the LAN version of Security Guard. SecurityWeb is also where the Server.db for
Security Guard for the Internet must be located. You can add your Server.db to the one that
comes with Security Guard or add the one that comes with Security Guard to yours. You could, if
you wanted to, create separate tcursors to separate server.db files but this will add an unnecessary
level of complexity into your applications. The sghtml.db also must be located in the SecurityWeb
Alias. You can also add your templates to this table or have separate HTML template tables for
your applications.

To modify the path to the SecurityWeb alias either edit the line that sets it to the server path in the
DoStartup of the web OCX in the SGSERVER.FSL form or add a permanent alias. The line is
currently strAliasPath = strPath. You can replace strPath with the actual path you wish to use. Be
sure to use double \’s if needed.

If you wish to add project aliases they must be added here as well. Security Guard for the Web
will use all Public and Project Aliases in its processing of code. But only project aliases created in
the SGSERVER.FSL session will be visible when they are needed. User rights and managing user
access can only be handled from aliases which exist as public aliases in your idapi.cfg file because
of how database variables are assigned from the aliases. This is only important for aliases holding
your data. You must have aliases to your tables and those aliases will need to be passed in calling
the session and database variables as you are using Security Guard to provide access to your
systems. This will be described in more detail below.

Passwords:
As with the LAN versions of Security Guard, the user can change their own password if it has
expired or about to expire. Users are notified if they present valid but expired credentials and are
told they must change their password (in fact they can reinitialize the same password). If a user is
within 7 days of their password expiring they are prompted to change it as well. You set the
length of time a password lasts before it must be changed. It can be any number of days up to 999
or you can leave it blank which will mean it never expires. You can disable a user account by
setting the expiration to 0 or by using the Disable User Account option on the web console which
does the same thing. Disabled accounts can be enabled again by resetting the expiration time or by
using the Enable Disabled User Account option on the web console.

Access Granted:
Once a user has been granted access, all the systems that they have access to will have the user’s
rights level conferred to their session variable in the running version of Paradox. If you unload the

library you will kill the session variables which will remove all users’ current access. They will
need to log in again at that point. This is unavoidable as the security info must be maintained in
memory to make it inaccessible to hackers and to manage the multiple session connections to the
BDE.

This does mean that if you plan to bring down your libraries to make changes you should start
another Paradox instance, shut down the SGSERVER.FSL in the current Paradox instance and
immediately start a copy of the SGServer.fsl in the second instance. Also, if you have more than
the Security Guard Libraries running, which you generally will, you may have to shut down the
instance of Paradox to clear all of the libraries. This is because not only does the
SGSERVER.FSL open libraries, but the sgweb.ldl and sgmcweb.ldl open each other and open
your application’s libraries and your libraries will open the Security Guard libraries as well. This
interconnected opening is required to protect the security of your password tables and because
there is no way for us to know which libraries, nor how many libraries, you will be adding to
Security Guard for the Internet so we use a scheme similar to the one used by the web server
OCX form.

Once the user has rights granted, they will have a record placed in the in memory tcursor which
you can access to check their login time stamps and to see who is logged in. Unloading the
libraries will kill the tcursor as well. While creating the session and issuing the passwords for the
system to the session, Security Guard for the Internet will also list the systems to which the user
has been granted rights. These will be listed just as you have listed them in Security Guard. The
Log Out option will also be added to the list as the default option.

These will be presented to the user and they are allowed to pick the one they want. Whichever
application they pick will be returned as a string. Log Out is handled internally by Security Guard
for the Internet. Any other response string will be the fetchrequest with the system name returned
which will be the startup screen for the application to be called. This template to start any system
will have to be added to the sghtml.db. Those templates will have to include the response action
that will then be called from the server table. What gets called is actually:

strResponse = string(Fetchtemplate(strSystemRequest))

Response.ResultString = strResponse
return TRUE

If Security Guard itself is called the Management Console startup is already in the sghtml.db. If
you leave the demo application in place this will also be an option for anyone you grant rights to
it. You can use the demo application form in the sghtml.db as a model for how to call your
applications.

Library Methods you can access:
You have direct access to 8 methods in the sgweb.ldl and sgmcweb.ldl. You can, and should, use
them from your application libraries to verify users and sessions. In some cases you must use them
so your application will function with Security Guard for the Internet. It is suggested you use the

included demoapp.lsl as a model. There are also some library methods such as sggetfieldvals
which you can use in your libraries or modify if you wish. You add them to your libraries as you
would any other library methods. In the Uses at the library level add:

Uses ObjectPal
sgverifyaccess(strName string) string
sgisuserloggedin(strUserName string) logical
sglastaccessstamp(siTimecheck smallint,strUserName string) String
sglogout(strAuthName string, strAuthPW string) string
sgreturndbvars(strLibCalling String, strAliasCalling String, strPassedName string) logical
sgreturnsessionvars(strLibCalling String, strPassedName string) logical
sgsetsessionpws(strLibName String, strPassedName string) logical
openapplibrary(strLibName String, strLibAlias string) Logical
endUses

In the Var at the library level add:
Var
loLibSGopen logical
loLibSGMCopen logical
lbSecurityGuard Library
lbSecurityGuardMC Library
dynDBs Dynarray[] database
dynSessions Dynarray[] session
tcTemplate tcursor
tcSectable tcursor
strPath String
strName string
strPW string
strErr string
Endvar

In the library’s open add:
method open(var eventInfo Event)
var
dynFile DynArray[] String
endVar

loLibSGopen = false
loLibSGMCopen = false

splitFullFileName(getFileName(), dynFile)
strPath = dynFile["DRIVE"] + dynFile["PATH"]

 if (NOT tcTemplate.open(":SecurityWeb:sghtml.DB")) then

 eventInfo.setErrorCode(CANNOTARRIVE)
 endIf

if not lbSecurityGuard.isassigned() then
 if not lbSecurityGuard.Open(":SecurityWeb:sgweb.ldl") then
 eventInfo.setErrorCode(CANNOTARRIVE)
 endIf
endif

if not lbSecurityGuardMC.isassigned() then
if not lbSecurityGuardMC.Open(":SecurityWeb:sgmcweb.ldl") then

 eventInfo.setErrorCode(CANNOTARRIVE)
 endif
endIf
endMethod

You need to open these libraries to make calls to them and both must be present as they make
calls to each other and the opening login screen depends upon them. The logical variables are
used in the first method you call in your library. They must be initialized to false on opening.

You should also add the following to your library’s close method:

method close(var eventInfo Event)

if lbSecurityGuard.isassigned() then
lbSecurityGuard.close()
endif

if lbSecurityGuardMC.isassigned() then
lbSecurityGuardMC.close()
endif

endMethod
Of course you will also need the Const, fetchtemplate and handlerequest methods as you would
for any library you want to run on the OCX along with the usual variables etc.

The Security Guard for the Internet methods you need and what they are for are described below.

The sgisuserloggedin(strUserName string) logical method:

You can use this to verify that a user has an open record in the security tcursor. You access the
users name from the request as:

strName = Request.AuthorizationUserid

You can then use the method as

if lbSecurityGuard.sgisuserloggedin(strName) then
;// do your stuff
else
;//they are not authorized in the security system so kill the process, force them to log in etc.
endif

The sglastaccessstamp(siTimecheck smallint,strUserName string) String method:

You can use this to verify that a user has accessed their security session within the last n minutes.
The variable siTimeCheck is the number of minutes you will allow between accesses. It is best not
to make it too short. Remember, the web is often slow and the users may also be looking at data
your system has returned. Security Guard itself uses a 30 minute window before timing out. You
access the users name from the request as:

strName = Request.AuthorizationUserid

You can then use the method as

strReturn = lbSecurityGuard.sglastaccessstamp(15,strName)

this method returns 3 possible values.

“OK” means the user has accessed the system within the correct time allotted to not have them
timed out.

"UserNotFound" means the user name that was passed is not a currently authorized user.

“PastTime” means that the user session has timed out and they are now removed from the
authorization tcursor and their session was terminated in Security Guard. If you receive this
response you should remove their session from your application too.

Once you have a returned value you can do something like:

Switch

Case strReturn = “OK”:
;// do your stuff

Case strReturn = "UserNotFound":
;//they do not have a session running in the security system so kill the process, force them to log
;//in etc. since without a session they have no passwords to systems issued.

Case strReturn = “PastTime”:

;// they timed out. Tell them so and have them log back in.
;// and kill any running session they have in your application

Otherwise:
;//the method failed so check your code or the system

endswitch

When OK is returned the authorization tcursor has this users last access stamp renewed. It is
suggested you call this method at the top of each process you activate from your libraries.

The sgverifyaccess(strName string) string method:

Another, generally better alternative is to call this method instead of the previous two. This
method calls the other 2 although it uses the default 30 minute window for the time out period.
This method is called like the others as:

strVerified = lbSecurityGuardMC.sgverifyaccess(strName)

This method returns the same 3 possible stings as sglastaccessstamp but has the fourth possibility
of returning the string (not logical) false if the user does not have a current login. You can handle
the response with a case statement as with the sglastaccessstamp. In Security Guard for the
Internet Management Console this is called each time the handler sgchoice is called, which is
generally when someone makes a menu selection. We suggest you use this method in the same
way. See the demo application’s sgdemochoice method as an example.

The sglogout(strAuthName string, strAuthPW string) string method:

You can and should call this method whenever someone logs out of one of your applications
which you are running in association with Security Guard for the Internet. These are all the
systems which you set up using the Security Guard for the Internet Management Console. These
are all systems with password protection on the tables. Generally you will want to present the user
with a Log Out option on each system that you have running on the web. When the response
comes back as Log Out then you would have an if/endif or a case statement such as:

if strChoice = "Log Out" then
 strName = Request.AuthorizationUserid
 strPW = Request.AuthorizationPassword
 strResponse = lbSecurityGuard.sglogout(strName,strPW)
 Response.Resultstring = strResponse
endif

The openapplibrary(strLibName String, strLibAlias string) logical method:

This method is essential to plugging your application in to Security Guard for the Internet. The

purpose of this method is to tell Security Guard’s libraries to open Library variables to your
application library. You pass it the name of the library you are calling it from and the alias in
which the library exists so that the called Security Guard library can find it and open it. You will
need to call this in the first action your library takes for a user. This is also where the logical
variables you initialized in the open come in. For example if you look in the sgdemochoice method
in the demo application library you will see:

if not loLibSGMCopen then
;//this tells the Security Guard console library to open this library

if not lbSecurityGuardMC.openapplibrary("demoApp.ldl", ":SecurityWeb:") then
strErr = errorMessage()
writeprofilestring(":SecurityWeb:errorlogs.ini",strval(today()),strval(time()),"demoapp

open sgmc lib"+" "+strName+" "+strerr)
while errorPop()

 sleep(1000)
 strErr = errorMessage()

writeprofilestring(":Securityweb:errorlogs.ini",strval(today()),strval(time()),"demoapp
open sgmc lib"+" "+strName+" "+strerr)

endwhile
 else
 loLibSGMCopen = true

endif
endif

This checks the logical variable loLibSGMCopen to see if the Management Console library has
already opened this calling library. If not, it tells it to try to open it. If the method fails it writes a
message to the Security Guard for the Web Error log. If it succeeds it sets the variable to true so
that this will not need to be run again. You need to run this procedure against both of the Security
Guard for the Internet libraries. See the demo application sgdemochoice method.

The sgreturnsessionvars(strLibCalling String, strPassedName string) logical method and
The sgreturndbvars(strLibCalling String, strAliasCalling String, strPassedName string)
logical method:

These two methods need to be run in conjunction with each other. The dynSessions dynarray
manages the session variable which Security Guard for the Internet opens. The sessions are all
named with the user name as submitted in the authorization process. If the session does not exist
it needs to be passed from Security Guard’s libraries by the sgreturnsessionvars method. If it can
not be created the process will end with an error message. If it can be created then the database
variables for the session need to be assigned. Database variables will be assigned for each alias in
your idapi.cfg. For this reason your aliases to data should be created in the idapi.cfg while you
should generally use project aliases for aliasing your programs so as not to have a bunch of
superfluous database variables using memory.

Each session will be assigned all the rights the user has set in Security Guard. Each user only gets

one session. You want to ensure it is deleted when the user logs out. These methods should also
be called from the first action the user takes in your library. They must be called after the
openapplibrary methods are run and before your users try to access any data. You call these
methods as shown here and in the sgdemochoice method.

if not dynSessions.contains(strName) then
if not lbSecurityGuardMC.sgreturnsessionvars("demoapp.ldl", strName) then
strErr = errorMessage()

writeprofilestring(":SecurityWeb:errorlogs.ini",strval(today()),strval(time()),"sgdemochoice
sgreturnsessionvals"+" "+strName+" "+strerr)

while errorPop()
 sleep(1000)
 strErr = errorMessage()
writeprofilestring(":Securityweb:errorlogs.ini",strval(today()),strval(time()),"sgdemochoice
sgreturnsessionvals"+" "+strName+" "+strerr)

endwhile
return sgerrorproc(Request, Response)
endif

if not lbSecurityGuardMC.sgreturndbvars("demoapp.ldl", ":SecurityWeb:", strName) then
strErr = errorMessage()

writeprofilestring(":SecurityWeb:errorlogs.ini",strval(today()),strval(time()),"sgdemochoice
sgreturndbvals"+" "+strName+" "+strerr)
 while errorPop()
 sleep(1000)
 strErr = errorMessage()
writeprofilestring(":Securityweb:errorlogs.ini",strval(today()),strval(time()),"sgdemochoice
sgreturndbvals"+" "+strName+" "+strerr)

endwhile
return sgerrorproc(Request, Response)
endif

endif

The sgreturnsessionvars uses the handleSessions, sgsessionpw and setpws methods which must be
placed in your library. These are generic handler methods which must be in your library exactly as
they are in the demo application. You can copy them from there. Be sure they are correctly named
and the variables correctly specified. HandleSessions, sgsessionpw and setpws are called by the
Security Guard libraries to set up the user session and rights from the ones Security Guard has
set.

The sgreturndbvars uses the handledbs method which must be placed in your library. This is a
generic handler method which must be in your library exactly as it is in the demo application. You

can copy it from there. Be sure it is correctly named and the variables correctly specified.
Handledbs is called by the Security Guard libraries to set up the user database variables from the
ones Security Guard has set. Any failures will be written to the error log. You can expect a failure
for each project alias.

The sgsetsessionpws(strLibName String, strPassedName string) logical method:

This method is used by setpws and not by you directly. It only needs to exist in your uses
statement as shown.

The method removeDBs(strDbVal string) method and the removeSession(strSesVarName
string) method:

These methods exist in the demo application and should also be copied to your own application
libraries. You call these in that order (db’s first, sessions second) to kill database variables and
session variables which were created for user authorization. See the “Log Out” choice in the
sgdemochoice method to see how to call them.

Security Guard Management Console for the Internet:
If you have the LAN based Security Guard then you can continue to use that Management
Console or the Management Console for the Internet which runs from the sgmcweb.ldl library.
When you open your browser to the SGSERVER.FSL the first time it will present you with the
login screen (from the pages directory you must place below the directory the server itself is in).
Yes will be selected. Press Submit. When you are presented with the user and password challenge
type Newuser for both the user name and the password. Press Submit. Select Security Guard and
begin adding yourself, users, systems etc. You can create Systems and Users separately from each
other. Both must exist before you try to link them. When you link users to systems or systems to
users be sure you link them to the correct rights level. You can also add custom rights levels if
you chose.

